Complete eigenfunctions of linearized integrable equations expanded around a soliton solution

نویسنده

  • Jianke Yang
چکیده

Complete eigenfunctions for an integrable equation linearized around a soliton solution are the key to the development of a direct soliton perturbation theory. In this article, we explicitly construct such eigenfunctions for a large class of integrable equations including the KdV, NLS and mKdV hierarchies. We establish the striking result that the linearization operators of all equations in the same integrable hierarchy share the same complete set of eigenfunctions. Furthermore, these eigenfunctions are precisely the squared eigenfunctions of the associated eigenvalue problem. The key step in our derivation is to show that the linearization operator of an integrable equation can be factored into a function of the integro-differential operator which generates the integrable equation, and the linearization operator of the lowest-order integrable equation in the same hierarchy. We also obtain similar results for the adjoint linearization operator of an integrable equation. Even though our analysis is conducted only for the KdV, NLS and mKdV hierarchies, similar results are expected for other integrable hierarchies as well. We further explicitly present the complete eigenfunctions for the KdV, NLS and mKdV hierarchy equations and give their inner products, thus they can be readily used to develop a direct soliton perturbation theory for any of those hierarchy equations. © 2000 American Institute of Physics. @S0022-2488~00!02709-2#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenfunctions of linearized integrable equations expanded around an arbitrary solution

Complete eigenfunctions of linearized integrable equations expanded around an arbitrary solution are obtained for the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and the Korteweg-de Vries (KdV) hierarchy. It is shown that the linearization operators and the recursion operator which generates the hierarchy are commutable. Consequently, eigenfunctions of the linearization operators are precisely ...

متن کامل

Structure of linearization operators of the Korteweg–de Vries hierarchy equations expanded around single-soliton solutions

In this Letter, we analyze the structure of linearization operators of the Korteweg–de Vries (KdV) hierarchy equations expanded around single-soliton solutions. We uncover the remarkable property that these linearization operators can be factored into the integro-differential operator which generates this hierarchy and the linearization operator of the KdV equation. An important consequence of ...

متن کامل

Solitons for nearly integrable bright spinor Bose-Einstein condensate

‎Using the explicit forms of eigenstates for linearized operator related to a matrix version of Nonlinear Schrödinger equation‎, ‎soliton perturbation theory is developed for the $F=1$ bright spinor Bose-Einstein condensates‎. ‎A small disturbance of the integrability condition can be considered as a small correction to the integrable equation‎. ‎By choosing appropriate perturbation‎, ‎the soli...

متن کامل

Solution and stability analysis of coupled nonlinear Schrodinger equations

We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...

متن کامل

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000